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Conwectiwe Heat Transfer by 
Impingement of Circular Liquid 

The impingement of circular, liquid jets provides a convenient method of cooling 
surfaces. Here, jet impingement cooling of uniformly heated surf aces is investigated 
analytically and experimentally for stable, unsubmerged, uniform velocity laminar 
jets in the absence of phase change. Analytical and numerical predictions are de­
veloped for a laminar radial film flow. Experiments using undisturbed laminar jets 
were performed to determine local Nusselt numbers from the stagnation point to 
radii of up to 40 diameters. Turbulent transition in the film flow is observed ex­
perimentally at a certain radius. Beyond this transition radius, a separate turbulent 
analysis is constructed. Integral method results are compared to numerical results, 
and Prandtl number effects are investigated. The predictions are found to agree well 
with the measurements for both laminar and turbulent flow. Predictive formulae 
are recommended for the entire range of radii. 

Introduction 
Cooling a surface with an impinging liquid jet is an attractive 

technique because of its high efficiency and unsophisticated 
hardware requirements. Applications of jet impingement cool­
ing are varied, and include processing of both metals and 
molded plastics, cooling of high-efficiency (aircraft) generator 
coils, and cooling of certain electronic modules. Such jets lend 
themselves to either convective boiling or to nonevaporative 
convection, but in both situations the cooling efficiency varies 
with the radial distance from the point of impact. In this study, 
we consider the impingement of a circular, unsubmerged, lam­
inar liquid jet on a surface of uniform heat flux. Convective 
transport, without change of phase, is analyzed theoretically 
and experimentally, taking account of both the initial laminar 
flow and the downstream turbulent flow. 

An axisymmetric, laminar impinging jet spreads into a thin, 
laminar liquid film when it impacts a plane surface normal to 
its axis (Fig. 1). The hydrodynamics of this film have previously 
been studied theoretically by Watson (1964) and experimentally 
by Azuma and Hoshino (1984a, 1984b, 1984c, 1984d) and by 
Olsson and Turkdogan (1966). Watson divided the flow ra­
dially into a stagnation region, a boundary layer region with 
surface velocity equal to jet speed, and a region of viscous 
similarity with decreasing surface velocity; he noted that the 
film flow would be terminated by a hydraulic jump at a location 
independently controlled by downstream conditions. The 
thickness of the film initially decreases and then increases with 
radius as viscous wall effects slow the spreading film. Watson 
employed both viscous similarity and momentum integral so­
lutions. 

Watson's theoretical expressions for the laminar boundary 
layer and similarity region velocity profiles and film thickness 
were experimentally verified by Azuma and Hoshino (1984b, 
1984c) using laser-Doppler measurements. This is in contrast 
to the results of Olsson and Turkdogan (1966), who measured 
the surface velocity by dropping bits of cork onto the liquid. 
Olsson and Turkdogan found poor agreement with Watson's 
predictions, observing a constant surface velocity lower than 
the jet speed, and their results have sometimes been used to 

deny the presence of a similarity region. However, no conclu­
sive evidence showed that the dropped, buoyant cork actually 
moved at the liquid surface speed. Since the experimental ap­
proach of Azuma and Hoshino is clearly more accurate, we 
are inclined to give their conclusions greater weight. For the 
details of Watson's flow field, the reader is referred to his 
paper. His expressions, and those of a later independent study 
by Sharan (1984), are quoted hereinafter when needed. 

Azuma and Hoshino measured the turbulent transition ra­
dius in their system (which used an annular orifice mounted 
on the plate, rather than an actual impinging jet) and also 
measured the subsequent velocity profiles. The turbulent film 
was well characterized by standard boundary layer results, but 
it did appear to show relaminarization farther downstream as 
the film slowed and its stability increased. 

Using Watson's similarity solution, Chaudhury (1964) ana­
lyzed the heat transfer from an isothermal wall in terms of a 
series solution for the similarity region and an integral solution 
for the boundary layer region; Carper (1989) has also presented 
a solution to that problem. Liu and Lienhard (1989) developed 
predictions of the Nusselt number for uniform heat flux using 
an integral method and presented limited comparisons to ex-
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Fig. 1 Jet and film flow field showing hydrodynamic evolution (not to 
scale) 
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perimental data. Wang et al. (1989a, 1989b, 1989c) gave de­
tailed theoretical solutions for heat transfer in the stagnation 
and boundary layer regions; these solutions account for vari­
able wall conditions as well as for conjugate heat transfer 
between the jet and the wall. They did not consider the down­
stream similarity region, in which surface velocity declines with 
radius; at common Reynolds numbers, the stagnation zone 
and boundary layer regimes are confined to radii of 3 to 7 
diameters from the point of impact. When a jet is used to cool 
large areas, the similarity region and turbulent transition must 
also be accounted for. 

Experimental studies have been few, particularly in regard 
to local, rather than average, heat transfer. Ishigai et al. (1977) 
measured local heat transfer coefficients in the hydraulic jump 
region and presented a limited, graphic set of data for the local 
heat transfer coefficient in the plane of impact. They men­
tioned that the data showed a downstream transition from 
laminar to turbulent flow; their jets were produced by a short 
tube, three diameters in length. Stevens and Webb (1989) in­
vestigated turbulent impinging jet heat transfer experimentally 
and developed a correlation for Nu^. Their data are confined 
to r/d < 15 and their correlation is accurate in a region r/d 
< 5 for d= 2.2 mm and a smaller region for larger diameter 
of jets. The radial transition from laminar to turbulent flow 
was not mentioned, but it must be noted that their jets were 
deliberately made turbulent prior to impact. 

Nakoryakov et al. (1978) used electrodiffusion to obtain 
local mass transfer coefficients beneath a laminar jet and com­
pared them to an appropriate boundary layer analysis. Their 
study applies to very high Schmidt number (Sc » 1 ) and a 
boundary condition of uniform wall concentration, corre­
spondent to uniform wall temperature conditions at Pr » 1. 

Their experiments showed the mass transfer coefficient to rise 
above the laminar prediction downstream, and they argued 
this to result from surface waves. However, the present results 
suggest that transition to turbulence is a more likely cause in 
their range of Reynolds number. The incoming jet velocities 
for their experiments were calculated on the basis of the ap­
parently theoretical stagnation zone result 

Nu ;=0.753Pr1 / 3Re, (1) 

where / is the radius of their electrodiffusion probe. However, 
this correlation was not independently corroborated in their 
paper. 

The present paper develops radially complete results for the 
liquid film heat transfer with uniform heat flux; most of these 
results are analytically derived, and all are validated experi­
mentally. Particular attention is devoted to the similarity re­
gion, employing numerical solutions for the uniform flux 
condition (which is not self-similar) to investigate the role of 
wall boundary conditions, simplified correlations, and the in­
tegral method prediction of a critical Prandtl number above 
which the thermal boundary layer does not reach the free 
surface (Liu and Lienhard, 1989). Our previous integral method 
solutions are extended to include Pr < 1. The laminar pre­
dictions are then compared to new experimental data from an 
experimental apparatus configured to achieve very clean, sta­
ble, laminar jets. The laminar predictions are generally found 
to agree very well with the data. In addition, turbulent tran­
sition is observed in the similarity region, and separate ana­
lytical predictions are developed to account for the turbulent 
augmentation of the heat transfer. A correlation is given for 
the turbulent transition point. 

Nomenclature 

c„ = heat capacity 
jet contraction coefficient 
= 0.611 
friction factor 
contracted jet diameter = 
•Jc~c x (diameter of ori­
fice) 

f'(ri) = similarity function, equa­
tion (24) 
local thickness of liquid 
sheet 
liquid sheet thickness at 
the position where ther­
mal boundary layer 
reaches the free surface 
liquid sheet thickness at 
transition point from 
laminar to turbulence 
liquid sheet thickness at 
fro 
thermal conductivity of 
the liquid 
thermal conductivity of 
the heater 
Nusselt number = qwd/ 
k(Tw-Tf) 

Nur = Nusselt number based on 
r, = qwr/k(T„-Tf) = 
Nurf (r/d) 
Prandtl number 
wall heat flux 
volume flow rate of jet = 

Cc = 

d 

h = 

hr] = 

h, = 

hrn — 

k = 

kw — 

Nud = 

Pr 

Q 
ufitd /4 

r = radius measured from 
point of jet impact 

rh = hump radius, at which 
turbulence is fully devel­
oped 

r0 = radius at which 5 reaches 
the surface of the liquid 
sheet 

r-i = radius where thermal 
boundary layer reaches 
the free surface for 
Pr > 1 

rT,i = location of the initial 
temperature profile given 

rm = radius where thermal 
boundary layer reaches 
the free surface for 
Pr < 1 

rUii = location of the initial ve­
locity profile given 

r, = radius at transition point 
from laminar to turbulent 
flow 

R = Reynolds number defined 
by Watson = 2Q/dv = 
(TT/2) Red-

Red = Reynolds number of the 
jet = Ufd/v 

St = Stanton number = q„/ 
PCpWmax ( T„ - Tsf) 

t = heater sheet thickness 
T(r, y) = liquid temperature distri­

bution 
Tf = jet temperature at im­

pingement 

Tm = 

Tsf = 
TSat — 

Tw = 

u(r,y) 

uf = 

y = 

5 = 

8, 

A 
AT0 

V = 

measured temperature on 
the back of the heater 
free surface temperature 
liquid saturation tempera­
ture 
wall temperature on the 
liquid side of the heater 
radial velocity distribution 
in liquid film 
velocity of impinging jet 
local maximum film ve­
locity (liquid free surface 
velocity), equal to Uj in 
regions 2, 21, and 3/ 
distance normal to the 
wall 
distance between nozzle 
and target plate 
viscous boundary layer 
thickness 
thermal boundary layer 
thickness 
S/h 
A at /Yo 
(t/d);e2 is the order of 
radial to vertical conduc­
tion in the heater sheet 
similarity variable 
nondimensional tempera­
ture 
dynamic viscosity 
kinematic viscosity 
density 
5/6, 
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Region 1/ Region 3/ 

(b) 
Fig. 2 Development oJ the thermal boundary layer: (a) Pr > 1; (b) Pr < 
1 (not to scale) 

2 Predictions From the Laminar Theory 
2.1 Integral Solutions for the Heat Transfer: Pr > 1. In 

aprevious study (Liu and Lienhard, 1989), we obtained integral 
solutions for the heat transfer in the boundary layer and sim­
ilarity regions for Prandtl number greater than the unity. The 
regions identified and results found are as follow (see Fig. 2a): 

Region 1. The stagnation zone. 
Region 2. d<h region: Neither the thermal nor viscous bound­

ary layer reach the free surface; surface temperature and 
velocity, r s / and «max, are the inlet temperature and velocity, 
Tf and Up 

Region 3. 8 = h and 8,<h region: The viscous boundary layer 
has reached the free surface. The velocity outside the viscous 
boundary layer decreases with radius, but the surface tem­
perature remains at the inlet temperature, Tf. 

Region 4. 8 = h, 8,= h, and Tw< Tsat region: In this region, the 
thermal boundary layer has reached the surface of the liquid 
sheet, and the temperature of the liquid surface increases 
with radius. 
For region 2, the boundary layer region follows the stag­
nation zone: 

/ A 1/2 

Nud= 0.632 Rey2 Pr1 (2) 

Region 2 ends and region 3 begins where the viscous boundary 
layer reaches the film surface at r= r0 = 0.1773tfRey3. In region 
3: 

0.407 R e y 3 P r 1 / 3 [ - ] 

Nud = -
0.1713(H) + ^ 4 7 Z 

\r/ Redd 

where 

0.267(d/r0) 1/2 

(3) 

(4) 

0.1713 (H) + ^ 

Region 3 ends and region 4 begins where the thermal boundary 
layer reaches the liquid surface at r = r,; equations defining r\ 
are given in our previous paper. In region 4: 

(5) Nu„ 
1 

P P V 1 - ^ ) i l \ + 0 . 1 3 0 ^ + 0 . 0 3 7 1 ^ PrRe d \ r V \dj d d 

where h is given by equation (20) below. Note that region 4 
will occur only for Pr less than a critical value near five3; 
otherwise, the thermal boundary layer does not grow fast 
enough to reach the surface of the liquid film, which thickens 
at increasing radius owing to viscous retardation. This Prandtl 
number prediction is of particular interest, and we shall explore 
it further using numerical solutions for the viscous flow regime 
below. Regions 3 and 4 correspond to Watson's self-similar 
viscous flow regime. 

2.2 Integral Solutions for the Heat Transfer: Pr < 1. As 
noted in our previous paper, the region map changes for small 
Prandtl number (see Fig. 2b): 
Region 11. The stagnation zone. 
Region 21. 5,<h region: Neither the thermal nor viscous 

boundary layer reaches the free surface; surface temperature 
and velocity, Tsf and umax, are the inlet temperature and 
velocity, 7} and uf. 

Region 31. 8, = h and8<h region: The thermal boundary layer 
has reached the free surface. The surface temperature in­
creases with radius, but the velocity outside the viscous 
boundary layer is still the jet velocity, uj. 

Region 41. 8 = h, bt = h, and Tw<Rsa, region: In this region, the 
viscous boundary layer has reached the surface of the liquid 
sheet, and the velocity of the liquid surface decreases with 
radius. 
The integral energy equation may be used to estimate the 

Nusselt number: 

jr\r(T- Tf)dy = ^ r 
PCp 

(6) 

In region 21, we approximate the velocity and temperature 
profiles as 

Tw=(Tf~Tw) 

~ ^max 
~3y 1 
2 6 2 

"3 y 
2 8, 

/ \ 3"! 

07 
y<8 

(7) 

(8) 
= Uf y>8 

These profiles satisfy no slip at the wall, have no shear or heat 
flux at the free surface (i.e., negligible evaporation; Liu and 
Lienhard, 1989), and match the local wall temperature. In­
tegration of equation (6) with these profiles yields 

We have here corrected a minor typographical error in the expression for 
C3 appearing in our previous paper. 

3 Our previous paper gave this value as 4.86. If the higher-order terms in the 
integral analysis are retained, the value becomes 5.23, which is 7 percent higher 
than the previous one. 
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Nurf = 
£***© (1_*+^2 

5 / r \ 
«- f i r1.786Nud l 1 

4**)" 

1/2 

(10) 

and C is a constant used to match to the stagnation zone. (The 
stagnation zone is discussed in Section 4.4 below.) If we assume 
that at the match point rm, Nud = Nurfi„, and <j> = </>„„ then 

2 

C--
9Re d Pr / ' r„ , \ / 2 2 J _ A 4 

, + 5</> ,„ -^ 1 / £» 
'l \d 

( ID 
16Nitff(B 

If 8/5, is very small and C is also negligible (as shown in section 
4), equation (11) can be further simplified to 

ld\ 1/2 

Nu d =1 .06Rey 2 Pr 1 / 2 l - J (12) 

Region 2/ ends where the thermal boundary layer reaches the 
surface of the liquid sheet at r = rTO; 

fro 

d 

0.1984Rey
3Pr1/3 

\T273 

l-0.7107Prl/2J 
(13) 

In region 31,8, = h and the temperature of the liquid surface, 
TSf, is an increasing function of r. The temperature profile in 
this region is 

^ ~ Av = ( 7 j / — Tw) 
2h 2\h 

(14) 

Atrn, the beginning of region 3/, Nu d = Nudj7-0, # = hT0, 
and 5 = 5 r o , where h and 5 can be computed from Sharan's 
equations (1984): 

Vo.1251-) +1.005 (^—,\ (15) 

8 r 
3=2.6791 — _ , 

1/2 

(16) 

Integration of equation (6) from r = rT0 with equations (8) 
and (14) gives 

Nurf 

\ 2 (1 - -A) / 
RedPrh 

fro 
r 

Ah (5 3 Ah7 
+ td {8~20Ai + 280A,j " 5 ^ 1 1 " 2 0 A f o + 280A4ro 

+ 2 ^ I o ( ' 1 _ l A r o 1 
(17) 

'Nuj-o 

where A = 8/h. If the terms in A are neglected, this simplifies 
to 
Nud 

2 

RedPrfc 
1_ [MY\ + 0 < 8 3 3 * : _ 0 . 8 3 3 ^ + 2-™^° 1 

! rft Nu r o 

(18) 

Region 4/ begins at r0 = 0.1773 rfReY3, where the viscous 
boundary layer reaches the surface; here, the surface velocity 
decreases with radius. Sharan's integral analysis (1984) shows 
that 

lufd
l 

" m a x ~ 5 hr 

(9) where 

£ = 0.1713 
d"\ 5.147 A-2' 

Rerf U 

(19) 

(20) 

(Equation (20) is in good agreement with Watson's expression 
for h, which is based on velocity profile of the similarity so­
lution.) The velocity profile is equation (8) with 8 = h and 
Umax from equation (19), while the temperature profile is still 
equation (14). At r = r0, h = h0 and Nurf = Nud>0- Integration 
of equation (6) from r = r0 yields 

N u d = 
0.25 

- J _ ^ _ f ) + 0 . l 3 0 f e - ^ + 0 . 2 5 - ^ RedPrU?2 d2 \d d Nud,0 

(21) 

2.3 Numerical Integration in the Viscous Similarity Re­
gion. In the region of viscous similarity, we may solve the 
nonsimilar boundary-layer energy equation numerically in or­
der to evaluate the accuracy of the integral method solutions 
for regions 3 and 4 ( P r > l ) and for region 4/ ( P r < l ) . In 
addition, we may probe the predicted critical Prandtl number 
for the occurrence of region 4 and the general differences 
between regions 3 and 4. 

Chaudhury (1964) used Watson's velocity similarity to trans­
form the energy equation in the film into the following form: 

dzT 
Pr/ ' 

(P + P)dT 
dt " rL dr 

Here, the velocity similarity profile is (Watson, 1964) 

p/'O0 = V3 + l-
2VI 

M l - r / ) ] 

(22) 

(23) 
\+cn[V 

where en is a Jacobi elliptic function, c = 1.402, the similarity 
coordinate is 

V 
y_ 

' h 

3V3gr 
2v2v(P + l\ -y (24) 

(25) 

and the length / is 
/=0.3243e?Rey3 

We may nondimensionalize r and / in equation (22) with r0, 
the radius at which the viscous boundary layer reaches the 
liquid surface (0.1833dRey3, according to Watson's analysis4). 
Temperature is nondimensionalized as 

T-Tf 

AT 
(26) 

where AT is chosen for convenience as AT = (2ir2vqwrl) / 

(3\/3><2) for uniform wall heat flux and as AT = T„ - 7} 
for uniform wall temperature. The differential equation is then 

* ? = P r / ' 0 0 — ^ ^ 

The thermal boundary condition at the wall is 

30 

drj 

for uniform flux and 

0 l , - o = l 
for uniform temperature. The free surface is assumed to ex­
perience negligible evaporation or convection, so that 

, = 0 

(28) 

(29) 

Watson found a Blasius velocity profile upstream of the similarity region. 
The integral method's algebraic velocity profile gives a constant of 0.1773, rather 
than 0.1833 (3.4 percent lower). To maintain consistency within each approach, 
we apply 0.1773 with our. integral solutions and 0.1833 with the differential 
equation solutions. 
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Fig. 3 Experimental apparatus: 1. Freon line; 2. chilled water tank; 3. 
pump; 4. water supply line; 5. pressure transducer; 6. digital voltmeter; 
7. pressure gage; 8. momentum dissipating plate; 9. honeycomb; 10. 
sharp-edged orifice plate; 11. plenum; 12. steel heater sheet; 13. ther­
mocouple leads; 14. pressurized plastic box; 15. ammeter; 16. voltmeter; 
17. 30 kW generator; 18. compressor; 19. heat exchanger; 20. cooling 
water; 21. throttling valve; 22. evaporator 

This approximation is valid for low liquid surface temperatures 
(Liu and Lienhard, 1989). 

The numerical integration begins at f = 1 (r = r0). The 
temperature profile at this station is the initial condition for 
the solution; tests (see below) show that the initial profile is 
quickly damped and has little influence on the Nusselt number 
downstream. The following initial profile was employed: 

T-Tf , 3. l / A 3 

^w>= 1 _2«;+AV y~b' (31) 

= 0 d,sy<S (32) 
which again satisfies the boundary conditions (no surface flux 
and matching to T„). The wall temperature and boundary layer 
thickness were selected to match those of the upstream bound­
ary layer as calculated from the integral solution. The differ­
ential equation was integrated using the Crank-Nicholson 
procedure. 

3 Experiments 
Experiments were performed to determine the wall temper­

ature distribution and Nusselt number that actually occur in 
jet impingement cooling. The experimental arrangement is 
shown in Fig. 3. The apparatus is in three primary parts: a 
water jet loop, a refrigerating system, and an electrical heating 
system. 

In our previous paper, the experimental jets showed signif­
icant disturbances and sometimes splattered. To prevent splat­
tering, a new apparatus was built specifically to produce 
uniform velocity-profile, laminar jets free of the surface dis­
turbances that produce splattering (Vasista, 1989). A large 
plenum with an inlet momentum-breakup plate and turbulence 

dissipating honeycomb was used to create a pressurized liquid 
supply free of disturbances from the incoming flow. The jets 
studied were produced at the bottom of the plenum. The sta­
bility of liquid jets is very sensitive to the' type of nozzle pro­
ducing the jet. Pipelike nozzles provide turbulent liquid to the 
jet when the Reynolds number exceeds a relatively small value 
(2000-4000); this turbulence generally leads to disturbances in 
the liquid surface, which are unstable and which are strongly 
amplified when the jet impacts a flat surface (Errico, 1986). 
In the present experiments, carefully machined sharp-edged 
orifice plates were used, rather than pipelike nozzles. Sharp-
edged orifices yield laminar, undisturbed jets of high stability. 
Thus, splattering was entirely suppressed in the present ex­
periments. 

The liquid supply was chilled by a mechanical refrigerator 
before being pumped to the plenum. The water was cooled to 
near 4°C. This cooling served two purposes. The first was to 
ensure that the liquid free-surface temperature would not be­
come high enough to produce significant evaporative heat loss 
at any point along the heater surface (Liu and Lienhard, 1989). 
The second was to increase the accuracy of the experiments: 
The requirement of low evaporative loss necessitates relatively 
low heat fluxes and consequently small differences between 
wall and inlet temperatures. Subcooling the liquid supply max­
imized the measured AT, without creating evaporative loss, 
and thus decreased the uncertainty in the measured Nusselt 
number. 

The liquid jets impinge on a heater made of 0.10-mm-thick, 
15.2-cm-wide stainless steel sheet. The sheet is stretched over 
the open top of a 15.2 cm by 17.7 cm plexiglass insulation box 
and over 2.54-cm-dia. copper rods, which serve as electrodes; 
springs maintain the tension in the sheet as it expands thermally 
and prevent its vibration or deflection. The insulation box 
keeps water away from the underside of the heater sheet, and 
restricts underside heat losses to a negligible natural convection 
loss. The box is slightly pressurized with compressed air to 
prevent liquid inflow. A 15 V, 1200 amp generator powers the 
sheet directly; the generator was run at up to 20 percent of 
full power. 

The wall temperature distribution is measured by 0.076 mm 
J-type thermocouples attached to the underside of the sheet 
and electrically insulated from it by high-temperature Kapton 
tape. Starting at the stagnation point of the jet, the thermo­
couples are placed at radial increments of 1.27 cm along the 
arcs of circle centered at the stagnation point, within a sector 
of very small angle. The azimuthal symmetry of the flow is 
very high, and the mechanical convenience of this arrangement 
was found to introduce no error. 

Radial conduction in the heater sheet may be shown to be 
of order e2 = (t/l)2 relative to vertical conduction, where / is 
the length scale associated with radial changes in the heat 
transfer coefficient. For the jets, /is essentially the jet diameter, 
d, so that e2 « 0.001. Radial conduction is thus negligible in 
comparison to vertical conduction; a formal perturbation so­
lution of the heat equation substantiates this conclusion. 

Convective backloss, via natural convection below the heater, 
is likewise negligible relative to the convective cooling at the 
upper surface of the heater; the back is essentially adiabatic. 
At the stagnation point, backloss is less than 0.2 percent of 
the total flux, owing to the very high liquid-side Nusselt num-

• ber. The backloss increases downstream, as the Nusselt number 
declines, but even in the worst case, at the largest radius, this 
loss is less than 4 percent. Because the backloss is so small, 
the temperature drop through the 0.06 mm thick Kapton tape 
(which electrically isolates the thermocouples) was entirely neg­
ligible and required no temperature correction. 

The vertical conductive temperature drop through the elec­
trical heater, however, can be appreciable in regions where the 
surface heat transfer coefficient becomes large, principally the 
stagnation zone. Solution of the heat equation, through terms 
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Fig. 4 Effect of initial conditions on the solution of the differential 
equations in the viscous similarity region for Pr = 4 
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Fig. 5 Comparison of uniform heat flux and uniform temperature wall 
conditions in the viscous similarity region (from differential equation) 

of order e = t/d, shows that the ratio of the true Nusselt 
number, based on liquid-side temperature (Nu, = qwd/k(Tw 

- T/)) to the measured Nusselt number, based on temperature 
at the back of the heater (Num = qwd/k(Tm - 7})) is 

Nu, 1 
N u m ~ l - f N u m / 2 <33> 

where f = tk/kwd relates the Biot number to the true Nusselt 
number . This temperature correction was applied in reducing 
the measured data . For the majority of our measurements, the 
correction is less than 10 percent of the Nusselt number . How­
ever, in the stagnation region, particularly when using the 
smallest orifice (3.18 mm) , the correction could be as large as 
30 percent. 

For each thermocouple measurement , a number of values 
were taken to reduce r andom error. These measured values 
were averaged to get the actual values for the calculations. The 
thermocouples were also calibrated under isothermal condi­
tions before and after each run to reduce systematic errors . 
The wall temperature increases with radius and the local Nus­
selt number is based on the temperature differences between 
the wall and the incoming jets . At the stagnation point , the 
temperature differences are smallest and the uncertainty is 
largest. For 3/8 in. (9.5 mm) diameter orifice it is ± 30 percent. 
The uncertainty goes down very rapidly as radius increases 
and for most positions uncertainty is less than ± 5 percent. 
Further reduction of stagnation zone uncertainty, by increasing 
the heat flux, was untenable as a result of the requirement of 
minimizing downstream evaporation. The uncertainty for Re d 

is less than ± 2 percent and that for r is less than ± 0 . 2 5 m m . 
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Fig. 6 Comparison of the solutions from differential and integral anal­
ysis of the viscous similarity region at Rerf = 104 for: (a) Pr > 1; and (b) 
Pr < 1 

Discussion 

4.1 Comparison of Integral and Differential Solu­
tions. Numerical integration of the differential equation (22) 
requires the temperature distribution at the beginning of the 
similarity region. The exact temperature distribution depends 
on the upstream stagnation and boundary layer regions. In 
our calculations, that distribution is based on the polynomial 
solution from the integral method. However, to test the effects 
of this initial condition, the computation was also run with an 
initially linear temperature distribution, between T„ and 7}, 
in the boundary layer and with a uniform initial temperature, 
at Tf. The bulk temperatures of these two profiles are larger 
and smaller, respectively, than that of the polynomial, while 
the initial slopes of the profiles near the wall are smaller and 
larger, respectively. Thus, the linear profile gives a lower initial 
Nud and the uniform profile gives a higher initial Nud. Figure 
4 compares the computations for the different initial temper­
ature profiles. By r/r0 = 3, the difference between the linear, 
polynomial, and constant initial temperature profiles has de­
creased to less than 10 percent, and the profiles are indistin-
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Fig. 7 Effect of Prandtl number on the free surface temperature in the 
viscous similarity region (from differential equation) 
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guishable at larger r/r0. Thus, the initial temperature 
distribution has minimal influence on the Nusselt number in 
the region far from the center, and results based on the 
polynomial initial distribution are clearly satisfactory. More­
over, these tests show that the heat transfer in the stagnation 
zone and boundary layer regimes have little effect on the wall 
temperature at large radii. 

Figure 5 compares heat transfer coefficients for uniform 
wall heat flux (UHF) to those for uniform wall temperature 
(UWT) from the differential equation solution. In our previous 
paper, we noted that, in the boundary layer region, the heat 
transfer coefficient for UHF was 25 percent higher than that 
for UWT. By contrast, in the similarity region, the difference 
between boundary conditions increases with increasing radius. 
Once the thermal boundary layer reaches the free surface, the 
energy from the wall is absorbed by the entire film, a situation 
comparable to fully developed duct flow. However, the UHF 
condition for the radial film differs markedly from the duct 
flow, in that the heat transfer surface increases linearly with 
radius. The UHF condition of the jet is akin to a duct flow 
with flux increasing linearly with axial position, and such a 
condition is known to produce a higher heat transfer coeffi-
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cient. This conclusion is not altered by our definition of Nud 
in terms of incoming, rather than bulk, temperature. 

The figure shows that, for small Prandtl numbers, the UWT 
Nusselt number decreases more rapidly than for large Prandtl 
number, since the driving temperature difference between wall 
and surface temperature dwindles much faster at low Pr. At 
r/r0 = 10, the UWT Nusselt number for Pr = 2 is only 9 
percent as large as that UHF, and that for Pr = 6 is only 40 
percent. 

Nusselt numbers from the integral and differential equations 
are compared in Figs. 6(a, b) for P r> l and Pr< l , respec­
tively.5 For Pr > 1, the maximum difference between the 
integral and differential solutions is about 10 percent. The 
integral solution is lower than the differential equation solution 
as a result of the assumed shape of the temperature distri­
bution. The integral solution neglects the higher order terms 
in <5,/<5, which should cause more error as Pr decreases toward 
unity, but the comparison shows better agreement with the 
differential equation solution at lower Pr. Apparently, the 
neglect of higher order terms compensates for the somewhat 
smoother profile of the integral procedure. For P r< l , Fig. 

5The ordinate Nur/ReJ'3 follows naturally from the scaling of the differential 
equation, but does not carry the full dependence on Re,,. 
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6(b) shows the simplified integral results, which neglect all 
terms in 0 or A. In contrast to Pr> 1, for Pr< 1 the neglected 
terms are as large as the terms retained when Pr approaches 
unity. The comparison shows that for Pr = 0.1 the disagree­
ment between the integral and differential equations is more 
than 20 percent. Fortunately, most liquid metals have Pr near 
0.01, and for this case the simplified integral results agree with 
the differential results to better than 5 percent. For larger 
Prandtl numbers, the higher order terms should be retained 
when calculating Nu^. 

From the integral analysis, we previously found that the 
thermal boundary layer would not reach the free surface for 
Pr>5.2. Therefore, for Pr>5.2, the free surface temperature 
remains at Tf for all r according to the integral analysis. Of 
course, this is an approximation based on the assumption of 
a sharply defined boundary layer. Figure 7 shows the dimen-
sionless free surface temperature from the differential equation 
solution as function of r/r0 and illustrates the strong influence 
of the Prandtl number. For Pr = 2, the surface temperature 
is more than 11 times higher than for Pr = 10. For Pr>5.2, 
the free surface temperature increases much more slowly. How­
ever, the surface temperature does rise above the inlet value 
for Pr>5.2, and this is another cause of differences between 
integral and differential solutions for Nud. 
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Fig. 13 Comparison of data to the laminar and turbulent predictions 
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For engineering purposes, it is convenient to construct a 
simplified version of the integral or differential predictions. 
First, we note that, in the Prandtl number range between 1 
and 5.2 (for which region 4 is possible), the difference between 
the integral solutions for region 3 and region 4, if applied at 
the same Reynolds number and radius, amounts to less than 
3 percent. Thus, the equation derived for region 3 can usually 
be applied as a good approximation in region 4 as well. 

For futher simplification, we may consider r/d » 0.322 
Re1/3 and neglect the terms in d/r and C3 in the integral result 
for region 3 (equation (3)): 

An (d\ Nurf=0.172RedPr";l - (34) 

Correlation of the differential equation solutions (accurate to 
±9 percent) leads to the following, similar result for 1 < Pr 
< 100 and 2.5 < r/r0 < 100: 

Nud=0.195Re^8Pr' ,0.98 r>n .38 / (35) 

For the range 2.5 < r/r0 < 10, a slightly better fit (to ±5 
percent) is 

578/Vol. 113, AUGUST 1991 Transactions of the ASME 

Downloaded 29 Jun 2009 to 18.80.1.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Nurf=0.15Rer3Pr0-38 (36) 

Since a turbulent transition and a hydraulic jump usually occur 
downstream, the latter equation is more useful. However, nei­
ther correlation is reliably accurate in the range 1 < r/r0 < 
2.5; this range is important in practice, and we recommend 
use of the theoretical prediction, equation (3), in region 3. The 
integral prediction for region 2 is equation (2). For laminar 
flow, equations (2) and (3) can be used to estimate the local 
Nusselt number. These predictions are compared with our ex­
perimental data below. 

The preceding results do not mean that the identification of 
regions 3 and 4 is unimportant. In region 4, liquid surface 
temperature increases rapidly with radius, and evaporation can 
become very significant. Conversely, in region 3, evaporation 
can be less important for low initial liquid temperature. Thus, 
for lower Prandtl numbers, the surface temperature should 
always be estimated, and, if necessary, the adiabatic surface 
condition should be dropped in favor of an evaporating surface 
condition. Surface evaporation was carefully suppressed in the 
present experiments by cooling the incoming liquid and by 
limiting the heat flux, but in engineering applications, evap­
oration will almost always occur. Evaporation will tend to 
raise Nurf (Liu and Lienhard, 1989), since it offers an additional 
heat sink, unless it leads to film dryout downstream, in which 
case Nud will drop disastrously. 

The numerical solutions with constant Prandtl number sug­
gest Nusselt number is proportional to Prandtl number to the 
0.38 power over Prandtl number from 1 to 100. However, 
most liquids of high Prandtl number show a rapid decrease in 
Prandtl number with increasing temperature. Streamwise var­
iations in Pr, as bulk temperature rises, are certainly important 
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and probably outweigh any finer adjustments of the Prandtl 
number exponents. Best agreement with experimental data was 
obtained when the values of viscosity (i.e., Red) and Pr used 
in the equations were those corresponding' to temperatures at 
the radial midpoint of the film. 

4.2 Turbulent Transition. The preceding analyses are based 
on laminar flow and consider neither surface waves nor tur­
bulent transition. Plainly, it is important to know the location 
of transition from laminar to turbulent flow. If, in addition, 
turbulence significantly raises the Nusselt number above the 
laminar prediction, a separate analysis of the turbulent trans­
port is necessary. 

Figure 8 shows measurements of the turbulent transition 
radius in the present system. The transition point is easily 
identified, since the laminar liquid sheet is smooth and trans­
parent, while the turbulent liquid sheet has a rough surface, 
which reflects light and appears bright. The associated surface 
waves are described by Azuma and Hoshino (1984a) as "lattice-
shaped" waves. A curve fit of our data (Gabour, 1991) gives 
the transition radius as 

R Re£422=1.2xl03 (37) 
V / 

In their own system, Azuma and Hoshino measured 

(-,)Re!P15 = 0.73xl03 (38) 
Vv 

which shows a slightly weaker dependence on Reynolds num­
ber, but turbulent transition points normally depend on the 
disturbances present in a specific system. Equation (37) sug­
gests a coordinate of (r/d) Re^422. Using this coordinate, some 
of the present heat transfer data are shown in Fig. 9. At the 
transition point, the figure shows a clear shift in the slope of 
the Nusselt number, which becomes more pronounced at higher 
Reynolds number. The Nusselt number increases above the 
laminar trend, as direct comparisons (below) illustrate. Note 
that the abscissa here is chosen to illustrate the turbulent tran­
sition, not the functional dependence of Nud on Red and Pr; 
thus, the curves do not collapse to a single line. Moreover, the 
streamwise changes in the Red and Pr dependencies make it 
impossible to present all of our data, for many different con­
ditions, on a single graph. In this and following figures, we 
present enough data to illustrate the general behavior without 
attempting to be exhaustive. 

The Nusselt numbers show a hump downstream of the tur­
bulent transition point. This hump corresponds to the point 
at which the turbulence has become fully developed (see heat 
transfer predictions below). As the Reynolds number increases, 
the hump becomes more pronounced and occurs after shorter 
distance. The transition and hump radii are shown as a function 
of jet Reynolds number in Fig. 10. The data for the hump 
position can be correlated as 

Table 1 Suggested formulae for local Nusselt number for Pr > 0(1) 

Region Range N u j 

Stagnation zone 0 < r/d < 0.787, 0.15 < Pr < 3 

P r > 3 
" 0.715 Re;j/2Pr0-4 

0.797 ReV'Pr1 /3 

Transition: stagn. to b.l 0.787 < r/d < 2.23 
173 

b.l. region (2) 2.23 < r/d < 0.1773 ReJ73 
0.632 R e y 2 P r 1 / 3 ( ? jrr 

Similarity region (3 &; 4) 0.1773 Re1/3 < r/d < 1200 ReJ 

(r0/d < r/d < r,/d) 

0.407 Rey 3 Pr ' / 3 (g) a ' ' 3 

H ^ f + ^ r [i(i) 
I c3 = o-^Wm) 1 / ' ^ _ 1 (my 

Transition: laminar/turb 1200ReT0422 < r/d < 2.86 X 104Re7 Nu h m ( rQ + [Nu„ r i ( rQ - N u ^ r , ) ] ^ IEH 
Turbulent region r/d > 2.86 X 10" ReT0'6 8HejPr/(G',;PFr 

9(Vr)(r/<l)+28(r/cQV(C,,Pr) 
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Re°/S- 2.86 XlO4 (39) 

Recall that the border of region 2 is r0/d = 0.1773Rey\ This 
implies that if Red > 1.1 x 105, the transition will take place 
in region 2. For the present Reynolds number range, transition 
always occurs in the similarity region (region 3). Indeed, the 
stability analysis of Azuma and Hoshino (1984d) suggests that 
the flow will always be most unstable near the border of regions 
2 and 3, with waves or turbulence commencing in the similarity 
region. 

Figure 11 shows a comparison of the data to the integral 
solution (equation (2)) in region 2. The agreement is generally 
within the uncertainty of the data. This region is relatively 
small. In this region, small concentric ripples can be observed 
(called "disturbance" waves by Azuma and Hoshino). These 
waves do not develop significantly, and they appear to have 
no strong effect on the heat transfer. 

In the similarity region, our heat transfer data show a clear 
transition from laminar to turbulent flow. Azuma and Hoshino 
(1984a) report a critical (transition) discharge Reynolds num­
ber, based on the jet diameter, of 4.8 X 104. From our data 
this critical discharge Reynolds number is much lower (less 
than 2 x 104). This discrepancy may be caused by the definition 
of the critical discharge Reynolds number adopted by Azuma 
and Hoshino. They regarded the flow to be turbulent when 
the so-called "sandpaperlike" waves are present over 50 per­
cent of the azimuthal direction, and took that discharge Reyn­
olds number as the critical value. That type of situation never 
occurs in the present experiments; here with increasing Reyn­
olds number, waves and disturbances inside the liquid sheet 
intensify, but the transition circle stays essentially circular and 
symmetric at all Red. 

The laminar analysis predicts that for a given Red, Nur = 
(r/d) Nurf reaches a peak value and then decreases. Figure 12, 
however, shows two features that differ from the prediction. 
The first is that the data break from the initially linear portion 
of the laminar prediction at a higher value of Nur than pre­
dicted. The other is a sharp peak in Nur downstream of the 
change in slope. The first feature suggests, from our obser­
vations and those of Azuma and Hoshino's (1984a, 1984d), 
that the disturbance waves have intensified in this portion of 
the film. They appear to increase the heat transfer coefficients 
by up to 20 percent in this short region, which is just ahead 
of the transition radius where sandpaperlike waves occur (see 
also Fig. 13b). The second feature, the peak, is simply the 
hump at full development of turbulence, as previously dis­
cussed. 

The friction coefficient measurements and mass transfer 
data of Nakoryakov et al. show a very similar behavior. The 
primary difference is that turbulent transition, as deduced from 
their friction coefficient measurements, occurs in the boundary 
layer region (region 2). Their data show a single peak rather 
than the pair of features seen here. This suggests that the sheet 
has become turbulent before surface waves can contribute sig­
nificantly to the heat transfer. They attribute the peak to waves 
rather than turbulent transition. However, for their Reynolds 
number range, the turbulent transition is a more likely expla­
nation. 

4.3 Prediction of Turbulent Heat Transfer. The Nusselt 
number turbulent flow may be calculated using the thermal ' 
law of the wall. The Stanton number is defined as 

St = - Qw 

and the law of the wall may be written in the standard internal-
flow form 

St = 
C/2 

1.07 + 12 .7(Pr 2 / 3 - l )Vcy2 
= / (C/ , Pr) (41) 

The skin friction coefficient is calculated from the Blasius law 
1/4 / \ 1/4 

(42) 
/ \ 1/4 / \ 

C,= 0.045 ( - ^ - r ) =0.073Rerf1 / 4(^| 

where the 1/7 power turbulent velocity distribution produces 
a maximum velocity 

**max _ ~ 
lUfd2 

7 hr 
and a film thickness h of 

^0.02091 
h = d 

Rei /4 + c-

with 

C=0.1713 + 
5.147 r, 0.02091, 
Red d' Rei /4 

(43) 

(44) 

(45) 

From the above, the Nusselt number for turbulent flow may 
be calculated: 

Nud = 
8Re r fPr/(Q, Pr) 

(46) 

+ 28[-\f(Cf,Pi) 

When Pr » 1, the equation simplifies to 
/ A / A 3/4 

Nud=0.0052Rey4(? -

W W 
Pr 

1.07 + 12 .7 (P r 2 / 3 - l )VC/2 ) 

(47) 

The turbulent Nusselt number is substantially higher than the 
laminar Nurf. 

Figures 13(a, b) show the laminar and turbulent predictions 
together with experimental data for two runs at different Reyn­
olds numbers. In both cases, agreement is excellent. The in­
creasing strength of turbulent augmentation with increasing 
Reynolds number is also quite apparent. The only significant 
disagreement observed is in the stagnation zone for lower Reyn­
olds number. Data and predictions for the stagnation zone are 
discussed in the next section. 

4.4 Stagnation Zone Heat Transfer. In the stagnation zone 
of a body passing through an infinite fluid medium, White 
(1974) finds 

Nu d =G(Pr , 3) m (48) 

The value of B = 2du/dr at the stagnation point of an inviscid 
impinging liquid jet was calculated approximately by Schach 
(1935)s 

where 

G(Pr, 3) = f 0.53898Pr04 

(0.6010Pr1/3-0.05085 
0.15<Pr<3.0 

Pr>3.0 

5=1 .76 " / (49) 

This value should be applicable for reasonably large jet Reyn­
olds numbers. 

From these results 

'0.715 Rey
2Pr0-4 0 . 1 5 < P r s 3 

,Wp r l / 3 T > . ^ (5°) Nu r f= 
0.797 Rey zPr ' P r > 3 

Figure 14 compares the data to the above equations, illustrating 
generally good agreement. The data appear to fall below the 

"Schach's Figs. 9 and 10 are a bit garbled. This often-quoted value is obtained 
from his dv/dz and continuity. 
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prediction at lower Reynolds numbers. This behavior may be 
related to a decrease in the stagnation zone velocity gradient 
owing to viscous effects, but further study is required. 

Nakoryakov et al. (1978) measured the Nusselt number for 
mass transfer beneath an impinging jet at high Schmidt number 
with uniform wall concentration. They did not directly test a 
relation for the stagnation zone transport. Instead, they used 
a relation for Nu (equation (1)) to calculate their jet velocities. 
The relation they used seems to be quite close to that suggested 
above, although its origin remains obscure (it does not appear 
in the reference they cite). Nakoryakov et al. also measured 
wall shear stress in the stagnation zone, but the calibration of 
their stress probe was similarly based on an assumed value of 
du/dr. 

Stevens and Webb (1989) used a pipe-type nozzle producing 
turbulent incoming jets, and their measured Nusselt numbers 
are in the same general range, although a bit higher, than the 
present data. They represented their stagnation zone results 
by a correlation that accounts for the Reynolds number de­
pendence of the stagnation velocity gradient with a dimensional 
correlating factor of u//d 

/ \ - 1/30 / \ - 1/4 

Nurf = 2.67Re2'57R) R ) Pr04 (51) 
W W 

where z is the distance of their nozzle from the heater. This 
correlation shows a somewhat different dependence on jet 
diameter and velocity than is found for the present laminar 
jets. Stevens and Webb present a second correlation for the 
radial variation Nud, which does not represent the present data 
well at the large radii of interest to us, although it does represent 
their own data very well for r/d less than about 5. 

The size of the stagnation zone may be estimated by cal­
culating the radius at which the stagnation boundary layer and 
the region 2 boundary layer have the same thickness (i.e., 
2.107rfRey2 = 2.679 (rrf/Red)

1/2; White, 1974; Sharan, 1984). 
The result is 

^7 = 0.787 (52) 
d 

Similarly, Stevens and Webb found the stagnation region be­
neath a turbulent jet to reach to roughly r/d = 0.75. Our 
crude estimate shows that the stagnation zone is very small. 
Its primary importance is that it possesses the maximum local 
heat transfer coefficient (lowest wall temperature) in the flow. 
It contributes little, however, to overall heat removal or down­
stream Nusselt numbers as may be seen from the full integral 
result for region 2 (Liu and Lienhard, 1989), which does not 
neglect the stagnation zone heat flow as does equation (2): 

/ 27 r\ m 

/ — RedPr-
80 8 

Nud= — — (53) 

- f - l +C, 

with 6 = 2.679 (rd/Red)
l/1. At r = rm, the Nusselt number 

should equal the stagnation zone Nusselt number; thus, 
C2= -0.2535 (54) 

The error in Nu,/ caused by neglecting the stagnation zone is 
less than 10 percent for r/d > 2.23. 

4.5 Recommendations for Nusselt Number Estimation. 
Table 1 summarizes the suggested relations for estimating local 
Nusselt number for impinging, circular, free liquid jets. For 
most regions, deviations are less than 10 percent. For laminar 
convection in the similarity region, however, waves can en­
hance the heat transfer, and Nu^ may exceed the estimate by 
up to 20 percent; as the waves are damped, the heat transfer 
goes back down. The wavy region is relatively small, however, 
because it is limited by subsequent turbulent transition. In the 
region of transition from laminar to turbulent flow, between 

r, and rh, we tentatively recommend a line fit between the 
laminar predictions at r, and the turbulent prediction at rh. 
This fit is shown in Figs. 13 (a, b) and can be seen not to 
account properly for the wave effects that occur in that region 
at larger Reynolds number. With the exceptions of this line fit 
and the correlation for r,/d, all equations in Table 1 are an­
alytical predictions; each is substantiated by experiment. 

4.6 Additional Studies Required. In jet impingement cool­
ing applications, turbulent incoming jets are likely to be pro­
duced, since upstream disturbances are not usually damped 
and the jets often issue from pipes. While turbulence may 
enhance stagnation point heat transfer, it is damped sharply 
as the film spreads. We are currently conducting experimental 
studies of turbulent jet heat transfer. 

Impinging jets will splatter if the jet surface is even slightly 
disturbed or the thin liquid sheet is disturbed beyond a certain 
magnitude. Disturbances to the incoming jet are often caused 
by irregularities in the orifice or by turbulence in the liquid 
supply. Roughness of the target surface can also disturb the 
liquid film. Splattering removes liquid from the liquid film, 
and thus lowers the Nusselt number; Liu and Lienhard (1989) 
estimated reductions of 20 percent or more. We are also in­
vestigating the role of splattering in jet impingement cooling. 

Finally, the behavior of the stagnation zone at lower Reyn­
olds number will be further investigated, owing to surface 
tension effects and a possible viscous decrease of the stagnation 
velocity gradient as Red becomes smaller. 

Conclusions 
Convective heat removal by liquid jet impingement has been 

investigated for uniform wall flux and circular, laminar jets. 
Both theoretical and experimental results are given. 

8 The radial distribution of Nusselt number is accurately 
predicted by the formulae in Table 1 for Prandtl numbers of 
order unity or greater. 

9 Laminar heat transfer in the film for Pr a O(l) may 
be calculated from equation (2) in the boundary layer region 
(region 2) and by equation (3) in the laminar portion of the 
similarity region (regions 3 and/or 4). These regions are de­
scribed in Section 2.1. 

8 Laminar heat transfer predictions for Pr < 1 are de­
veloped in Section 2.2. 

8 Comparison of the integral predictions to numerical so­
lutions in the similarity region supports conclusions previously 
drawn from the integral approach for Pr > 1 as well as the 
new results for Pr < 1. 

8 Turbulent transition occurs at a radius given by equation 
(37). Turbulence becomes fully developed at a radius given by 
equation (39). Turbulent heat transfer in the film is given by 
equation (46). 

8 The stagnation point Nusselt number is reasonably well 
represented by equation (50). 
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CORRECTIONS OF LAMINAR IMPINGING JET EQUATIONS

J.H. LIENHARD V

The equation for C3 is a bit complicated, and it has repeatedly carried typographical
errors of one sort or another. These errors appear in: Liu and Lienhard (1989, eq. 16);
Liu, Lienhard and Lombara (1991, eq. 4); Lienhard (1995, Table 5); and Lienhard (2006,
eq. 36).

The correct equation for C3 is:

(1) C3 =
0.267(d/r0)

1/2[
0.1713 (d/r0)

2 + (5.147 r0/Red d)
]2

Re
1/2
d

− 1

2

(r0
d

)2
Equation (78) and Table 5 in Lienhard (1995) give an incorrect expression for Nud. The

correct expression is:

(2) Nud =
qw d

k(Tw − Tf )
=

8RedPr f(Cf ,Pr)

49 (hr/d2) + 28 (r/d)2 f(Cf ,Pr)
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